
Lelantus Spark with Curve Trees

Aram Jivanyan

Abstract

A recent construction referred to as Curve Trees is a novel and efficient design for membership proofs which
significantly optimizes the communication and computational complexity of the argument including the proof sizes,
proving time, and verification time. This enables efficient scaling of the set size to billions of elements and very
importantly also provides efficient batch verification techniques which further can decrease the marginal cost of proof
verification. We discuss how Lelantus Spark can be implemented with Curve Trees to support full membership proofs.

1 Curve Tree Construction: Commitment Phase
Curve Trees operate over two amicable elliptic curve groups denoted as 𝐸𝐹𝑝

and 𝐸𝐹𝑞
. The scalar field of 𝐸𝐹𝑝

is 𝐹𝑝

and its element’s affine coordinates belong to the field 𝐹𝑞 . Similarly, the scalar field of the elliptic curve group 𝐸𝐹𝑞
is

𝐹𝑞 and its elements affine coordinates belong to the field 𝐹𝑝. For an elliptic group element 𝐶, we denote the 𝑥 and 𝑦
coordinates by 𝑥(𝐶) and 𝑦(𝐶). In Lelantus Spark, the elliptic curve group used is 𝑠𝑒𝑐𝑝256𝑘1, which we will refer to as
𝐸𝐹𝑝

. The corresponding amicable curve is 𝑠𝑒𝑐𝑞256𝑘1 which will be referred to as 𝐸𝐹𝑞
.

In Lelantus Spark both the serial commitments and value commitments belong to 𝐸𝐹𝑝
. To commit to these commitments,

we fix the leaf length parameter 𝑑 and generate 2𝑑 + 1 generator points

{𝐺1, . . . , 𝐺𝑑 , 𝐻1, . . . , 𝐻𝑑 , 𝐻𝐹𝑞
} ∈ 𝐸2𝑑+1

𝐹𝑞

and 𝑑 + 1 generator points
{𝐹1, . . . , 𝐹𝑑 , 𝐻𝐹𝑝

} ∈ 𝐸𝑑+1
𝐹𝑝

.

First layer commitment: First layer commitment is done through the following steps

• Take all coins and extract the list of serial and value commitment pairs {(𝐶1, 𝑉1), (𝐶2, 𝑉2) . . . , (𝐶𝑁 , 𝑉𝑁)}. Pad
the list by repeating the last pair until the array size becomes equal to 𝑁 = 𝑑 𝑝

• Divide the array of all commitment pairs into successive sub-arrays of size 𝑑. For brevity, we will skip adding
extra sub-indexes and will denote the current sub-array as {(𝐶1, 𝑉1), . . . , (𝐶𝑑 , 𝑉𝑑)}

• Note that all commitment values should be permissible points. We commit each sub-array through a generalized
Pedersen commitment scheme to get the first layer commitment element

𝐶1
1 = 𝑥(𝐶1)𝐺1 + 𝑥(𝐶2)𝐺2 + . . . 𝑥(𝐶𝑑)𝐺𝑑 + 𝑥(𝑉1)𝐻1 + 𝑥(𝑉2)𝐻2 + . . . + 𝑥(𝑉𝑑)𝐻𝑑 + 𝜌𝐻𝐹𝑞

Note that the blinding factor 𝜌 should be selected to make the group element 𝐶1
1 a permissible point.

• After committing to all sub-arrays the result will be a set of 𝑁/𝑑 points

𝐶1
1 , 𝐶

1
2 , . . . , 𝐶

1
𝑁/𝑑

where ∀𝑘 ∈ 1, . . . , 𝑁/𝑑 𝐶1
𝑘
∈ 𝐸𝐹𝑞

1

Other layer commitments: Except for the first layer where 2𝑑 elements are committed through a single commitment, all
successive layer commitments will commit to exactly 𝑑 elements. The fixed generator points for those commitments will
be denoted respectively 𝐺1, . . . 𝐺𝑑 , 𝐻𝐹𝑞

and 𝐹1, . . . 𝐹𝑑 , 𝐻𝐹𝑝
for two consecutive layers. The other layer commitment

process for others but the first layer will work as follows

• Take all commitments from the previous layer and divide them into sub-arrays of size 𝑑.

• Lets assume {𝐶𝑙
1, 𝐶

𝑙
2, . . . , 𝐶

𝑙
𝑑
}is the current sub-array we need to commit.

– If 𝐶𝑙
𝑘
∈ 𝐸𝑑

𝐹𝑝
then the next commitment is computed as

𝐶𝑙+1 = 𝑥(𝐶𝑙
1)𝐺1 + 𝑥(𝐶𝑙

2)𝐺2 + . . . + 𝑥(𝐶𝑙
𝑑)𝐺𝑑 + 𝜌𝑙𝐻𝐹𝑝

. In this case the final commitment point 𝐶𝑙+1 ∈ 𝐸𝐹𝑞

– If 𝐶𝑙
𝑘
∈ 𝐸𝑑

𝐹𝑞
then next commitment is computed as

𝐶𝑙+1 = 𝑥(𝐶𝑙
1)𝐹1 + 𝑥(𝐶𝑙

2)𝐹2 + . . . + 𝑥(𝐶𝑙
𝑑)𝐹𝑑 + 𝜌𝑙𝐻𝐹𝑞

In this case the final commitment point 𝐶𝑙+1 ∈ 𝐸𝐹𝑝

Note that the blinding factor 𝜌𝑙 should be selected to make 𝐶𝑙+1 a permissible point.

2 Implementing Parallel Membership Proofs
In original Lelantus Spark, we have to generate parallel membership proofs over two sets

{𝐶0, 𝐶1, . . . , 𝐶𝑁−1}

and
{𝑉0, 𝑉1, . . . , 𝑉𝑁−1}

of commitments where the two values 𝐶𝑖 and 𝑉𝑖 are logically paired at each position 𝑖. In the parallel one out of many
proofs, the prover reveals a pair of group elements �̂� and 𝑉 and proves that 𝐶 commits to the same value as some secret
element 𝐶𝑖 from the set 𝐶0, 𝐶1, . . . , 𝐶𝑁−1. He also proves that the revealed 𝑉 commits to the same value as the secret
commitment 𝑉𝑖 . Note that 𝐶𝑖 and 𝑉𝑖 share the same index 𝑖 here. In existing Spark Implementation the commitments
are of the following form

𝐶 = 𝐶𝑜𝑚𝑚(𝑠, 𝑘, 0) = 𝑠𝐹 + 𝑘𝐺
𝑉 = 𝐶𝑜𝑚(𝑣, 𝑡) = 𝑣𝐺 + 𝑡𝐻

These two commitment functions 𝐶𝑜𝑚𝑚 and 𝐶𝑜𝑚 share the same generator points 𝐺 and 𝐻. During the Spend
operation, the prover reveals two new commitments referred to as offset commitments of the form

�̂� = 𝐶𝑜𝑚(𝑠, 𝑘, 𝑟)

𝑉 = 𝐶𝑜𝑚(𝑣, 𝑡′)
and proves that the commitments 𝐶𝑖 − �̂� and 𝑉𝑖 −𝑉 are both a commitment to zero for a secret index 𝑖.

𝐶𝑖 − �̂� = 𝐶𝑜𝑚𝑚(0, 0,−𝑟)

𝑉𝑖 −𝑉 = 𝐶𝑜𝑚(0, 𝑡 − 𝑡′)
In Curve Trees, the membership proof works through the following steps

• Given the two sets of commitments 𝐶1, 𝐶2, . . . , 𝐶𝑁 and 𝑉1, 𝑉2, . . . , 𝑉𝑁 , the Curve Tree commitment over the set
is built resulting in the curve tree root 𝑅 as is described in the section above.

2

• To prove the knowledge of a serial and value commitment pair (𝐶𝑖 , 𝑉𝑖) belonging to the set 𝐶1, 𝐶2, . . . , 𝐶𝑁

𝑉1, 𝑉2, . . . , 𝑉𝑁 , two offset commitments �̂� and 𝑉 are revealed. Next, a proof is generated that �̂� = 𝐶𝑖 + 𝑟𝑐𝐻𝐹𝑃

and 𝑉 = 𝑉𝑖 + 𝑟𝑣𝐻𝐹𝑃
where 𝐻𝐹𝑃

is an independent generator for some secret index 𝑖.

It is not trivial to implement parallel membership proofs with Curve Trees hence a question arises as to how to efficiently
bind two commitments together during the membership proofs. The suggested steps are the following:

Rfirst_level
𝑆𝑅

:=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎝
𝑐𝑘 = (𝐺1, . . . , 𝐺𝑑 , 𝐻1, . . . , 𝐻𝑑 , 𝐻𝑝) ∈ 𝐸𝐹𝑝

,

𝐻𝑞 ∈ 𝐸𝐹𝑞
, 𝐶 ∈ 𝐸𝐹𝑝

, ˆ︁𝐶 ∈ 𝐸𝐹𝑞
;

𝑖, 𝜌, ˆ︁𝜌𝐶 , ˆ︁𝜌𝑉 , 𝑦(𝐶𝑖), 𝑦(𝑉𝑖)
𝑥 = (𝑥(𝐶1), . . . , 𝑥(𝐶𝑑), 𝑥(𝑉1), . . . , 𝑥 (𝑉𝑑))

⎞⎟⎟⎟⎟⎟⎠

|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁

𝐶 = 𝑥(𝐶1)𝐺1 + . . . + 𝑥(𝐶𝑑)𝐺𝑑+
𝑥(𝑉1)𝐻1 + . . . + 𝑥(𝑉𝑑)𝐻𝑑 + 𝜌𝐻𝐹𝑞ˆ︁𝐶 = (𝑥(𝐶𝑖), 𝑦(𝐶𝑖)) + ˆ︁𝜌𝐶𝐻𝑞 ,ˆ︁𝑉 = (𝑥(𝑉𝑖), 𝑦(𝑉𝑖)) + ˆ︁𝜌𝑉𝐻𝑞 ,

(𝑥(𝐶𝑖), 𝑦(𝐶𝑖) ∈ 𝐸𝐹𝑞
, (𝑥(𝑉𝑖), 𝑦(𝑉𝑖)) ∈ 𝐸𝐹𝑞

are permissible points

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
This relation partially incorporates the logic of the non-optimized version of single-layer proof in the original Curve

Tree construction, which has been defined for curve points with two affine coordinates committed in a specified order
through independent generators and also requires index correspondence to be proven for two committed coordinate
values. Its implementation has never been coded or described in detail, hence we discuss the core implementation
difference that differs this layer proof from the other layer proofs.

The challenge here is proving that given two commitments ˆ︁𝐶 and ˆ︁𝑉 , their first affine coordinates 𝑥(𝐶𝑖) and 𝑥(𝑉𝑖)
are respectively the 𝑖-th and 𝑑 + 𝑖-th elements in the vector committed by 𝐶. This can be probably proven by different
arithmetic relation tricks in the Bulletproof circuit and the described technique below is a suggestion.

• Find the position 𝑖 of the ˆ︁𝐶-s first affine argument 𝑥(𝐶) in the committed vector.

• Find the position 𝑗 of the ˆ︁𝑉-s first affine argument 𝑥(𝑉) in the committed vector.

• Assert 𝑗 = 𝑖 + 𝑑

For all other layers, the relation will be the same as in the original Curve Tree construction. Its formal description is the
following

Rother_levels
𝑆𝑅

:=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
⎛⎜⎜⎜⎜⎜⎝
𝑐𝑘 = (𝐺1, . . . , 𝐺𝑑 , 𝐻𝑝) ∈ 𝐸𝐹𝑝

, 𝐻𝑞 ∈ 𝐸𝐹𝑞
,

𝐶 ∈ 𝐸𝐹𝑝
, ˆ︁𝐶 ∈ 𝐸𝐹𝑞

;
𝑖, 𝑟, 𝜌, 𝑦

𝑥 = (𝑥(𝐶1), . . . , 𝑥(𝐶𝑑))

⎞⎟⎟⎟⎟⎟⎠
|︁|︁|︁|︁|︁|︁|︁
𝐶 = 𝑥1𝐺1 + . . . + 𝑥𝑑𝐺𝑑 + 𝑟𝐻𝑃ˆ︁𝐶 = (𝑥𝑖 , 𝑦) + 𝜌𝐻𝑞

(𝑥𝑖 , 𝑦) ∈ 𝐸𝐹𝑞
is a permissible point

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
The proof of this relation is described in the original paper in detail and the implementation is the same as implemented

in the original paper.

2.1 Batching
The batching of Membership proofs basically will boil down to the batching of Bulletproof proofs which is described in
the original bulletproof paper [3]

3

3 Required Modifications in Lelantus Spark
Making Coins Permissible Points: To support Curve Trees, we need each generated commitment to be a permissible
point as defined in [1]. This requires the transaction generator to choose the random blinding parameters so the resulting
commitment will become a permissible point. Checking if all commitments are permissible group elements should
become part of the transaction verification process.

Lelantus coins are comprised of serial and value commitments denoted by 𝐶 and 𝑉 , which are Pedersen commit-
ments computed through a CreateCoin algorithm described in the original paper. Below we replicate the algorithm
steps with all required modifications to produce commitments represented through permissible points.

1. Parse the recipient address 𝑎𝑑𝑑𝑟pk = (𝑄0, 𝑄1, 𝑄2).

2. Do

(a) Sample 𝑘 ∈ 𝐹𝑝 .
(b) Compute the recovery key 𝐾 = 𝑘 · 𝑄0 and derived recovery key 𝐾der = 𝑘 · 𝑄1.
(c) Compute the serial number commitment

𝐶 = Comm(Hser (𝐾der), 0, 0) +𝑄2

(d) Compute the value commitment
𝑉 = 𝐶𝑜𝑚(𝑣,Hval (𝐾der))

.

While both 𝐶 and 𝑉 are not produced as permissible points

As approximately 1 out of 4 points on the curve are permissible, this will require 16 iterations over 𝑘 in average before
finding an appropriate value that makes both 𝐶 and 𝑉 permissible.
Transition from SPARK anonymity sets to Curve Tree-based anonymity sets: There can be different ways to ensure
transformation of the anonymity sets:

1. Naive Approach: The naive transition process could be spending all Spark coins and minting them as new fresh
CT coins. This may be more risky from the privacy violation perspective.

2. Transition: A simple Spark spend transaction can be executed to spend all existing Spark coins and Mint new
CT coins which are permissible. This can help to start a fresh new anonymity set whose size can grow to billions
over time.

3.1 Acknowledgment
The author thanks Luke Parker and Aaron Feickert for their invaluable support along the whole process of understanding
Curve Trees and how Lelantus Spark can leverage them.

References
[1] Matteo Campanelli, Mathias Hall-Andersen, Simon Holmgaard Kamp. Curve Trees: Practical and Transparent

Zero-Knowledge Accumulators https://eprint.iacr.org/2022/756

[2] Liam Eagen. Zero Knowledge Proofs of Elliptic Curve Inner Products from Principal Divisors and Weil Reciprocity.
https://eprint.iacr.org/2022/596

[3] Benedict Bunz et al. Bulletproofs. Short proofs for confidential transactions and more
https://eprint.iacr.org/2017/1066

4

	Curve Tree Construction: Commitment Phase
	Implementing Parallel Membership Proofs
	Batching

	Required Modifications in Lelantus Spark
	Acknowledgment

